精准学习--免费阅读资讯-电子书PDF/EPUB/MOBI/TXT
精准学习--免费阅读资讯-电子书PDF/EPUB/MOBI/TXT
精准学习.jpg
作者: [法] 斯坦尼斯拉斯·迪昂
出版社: 浙江教育出版社
出品方: 湛庐文化
原作名: How We Learn: Why Brains Learn Better Than Any Machine . . . for Now
译者: 周加仙
出版年: 2023-3
学习限定了搜索空间
当代人工智能仍然面临着一个重大问题,那就是内部模型的参数越多,系统就越难找到最佳的调整方法。而在目前的人工神经网络中,搜索空间是巨大的。因此,计算机科学家不得不处理大规模的组合爆炸:在每个层级都有数以百万计的选择,而它们的组合是如此之多,系统不可能探索所有的选择。因此,学习有时会非常缓慢,需要在这片广阔的可能性地图中进行数十亿次尝试才能将系统推向正确的方向。在巨大的空间中,无论数据有多少,都会变得稀缺。这个问题被称为“维度诅咒”(curse of dimensionality),当你有数百万个潜在的杠杆需要撬动时,学习就会变得非常困难。
神经网络拥有的大量参数往往还会导致另外一个问题,这就是所谓的“过度拟合”(overfitting)或“过度学习”:系统拥有如此多的自由度,以至于它发现记住每个例子的所有细节比找出一个更普遍的规则来解释这些细节更容易。
正如计算机科学之父约翰·冯·诺伊曼(John von Neumann)的名言:“用4个参数我可以画出一头大象,用5个参数我可以让它甩动鼻子。”他认为拥有太多的自由参数可能是一种诅咒,因为仅仅通过记住每个细节来“过度拟合”各种数据太容易了,你不需要对大象这个物种有太多深入的了解,就可以将其归类为皮厚的动物。
精准学习--免费阅读资讯-电子书PDF/EPUB/MOBI/TXT